TCT-AP 2014

Seoul, April 22 ${ }^{\text {nd }}, 2014$

Left Main and Bifurcation PCI: Dedicated Bifurcation Stents

Eberhard Grube MD, FACC, FSCAI

University Hospital, Dept of Medicine II, Bonn, Germany
Stanford University, Palo Alto, California, USA

Disclosure Statement of Financial Interest

Physician Name

Company/Relationship

Eberhard Grube, MD
Medtronic: C, SB, AB, OF
Direct Flow: C, SB, AB
Mitralign: AB, SB, E
Symetis: AB
Boston Scientific: C, SB, AB
Biosensors: E, SB, C, AB
Cordis J\&J: AB
Kona Medical: E, AB
Maya Medical: E, AB
Abbott Vascular: AB
Capella: SB, C, AB
InSeal Medical: AB
Valtec: E, SB
Claret, SB

Design Approach

Fundamentally there exist two design philosophies:

1. Modified Provisional:

Objective: Provide sidebranch access without main branch compromise.
e.g. BSC petal, Abbott Frontier, Trireme Antares, Stentys.
2. Dedicated devices:

Objective: Provide treatment of the bifurcation segment using an anatomically considered design.
e.g. Cappella Sideguard, Tryton, Axxess.

1. Modified Provisional:

Pro's:

- Simplest design concept.
- Cost effective, single stent for majority.
- Conceptually easy to use.

Con's:

- Deliverability.
- Guidewire twist, guidewire bias, technically more demanding

STENTYS ${ }^{\circ}$ Technology

- Nitinol, self-apposing stent (BMS and DES)
- 6F single-wire, rapid exchange, CE-marking
- Disconnectable struts over full length*

 interconnector

Disconnection

STENTYS Disconnection Technology

1. Wire and balloon through distal cell

-

2. Inflate balloon at low pressure

Current and next Indications

CE Marked indications

STENTYS Clinical Program

APPOSITION (STEMI)

Feasibility trial: Single Arm - STENTYS BMS (N=25)
$\rightarrow 3$ day and 6 month QCA and IVUS
Randomized trial: STENTYS BMS vs ABBOTT VISION/Medtronic Driver ($\mathrm{N}=80$)
$\rightarrow 3$ day QCA and OCT, 6 month clinical
"Real life" study: Single arm - STENTYS BMS \& DES (N=1000)
$\rightarrow 30$ day and 12, 24 month MACE
Randomized trial: STENTYS Sirolimus DES(S) vs Medtronic Resolute (N=150)
$\rightarrow 4$ or 9 month OCT
IDE - Randomized trial: STENTYS BMS vs ABBOTT Multi-link (N=880)
$\rightarrow 12$ month TVF, IVUS/OCT sub-study - ENROLLMENT IN PROGRESS

OPEN (Bifurcation)

Feasibility trial: Single Arm - STENTYS BMS \& DES (N=60)
$\rightarrow 6$ month QCA and IVUS
"Real life" study: Single Arm - STENTYS DES (N=200)
$\rightarrow 6$ month MACE, OCT sub-group

ADEPT (SVG)

Randomized trial: STENTYS BMS vs STENTYS DES (N=80)
$\rightarrow 6$ months QCA - late loss - ENROLLMENT IN PROGRESS

All-comers

All-comers registry: STENTYS BMS \& DES in ACS (STEMI, NSTEMI) and stable patients (bifurcation, ectatic, tapered, aneurysm, SVG) (N=3000) - ENROLLMENT IN PROGRESS

Reduce Complexity

3 Options in the Provisional Approach
A. Deploy and STOP
B. Deploy and Disconnect
C. Deploy, Disconnect and Stent

Bifurcation sizing Dilemma

Finet's law

$$
D_{1}=0.678\left(D_{2}+D_{3}\right)
$$

$$
D_{1}^{3}=D_{2}^{3}+D_{3}^{3} \text { (Murray's }
$$

law)

Case study

Case study: after STENTYS implantation

Take-home Messages

- Vessel tapering, stent sizing, and malapposition are some of the challenges in the treatment of bifurcation lesions
- The STENTYS Self-Apposing stent provides a simple provisional-approach to treating bifurcation lesions with adaptation to vessel size, excellent apposition and full sidebranch access
- Clinical data from OPEN I showed a 3.7\% MACE at 6 months (1 TLR) with STENTYS DES(P)
- Data from OPEN II will provide results in a larger, real-life population

2. Dedicated Devices:

Pro's:

- Effective treatment of entire bifurcation anatomy.
- Minimal main branch impact.

Con's:

- Price and Time since occ. 2 stents required.
- More complex design than modified provisional.

Tryton Side Branch Stent

Tryton is a Cobalt alloy bare metal stent

Tryton Cases

Tryton 1: Conclusions

- Tryton Side-Branch Stent when used in conjunction with a 'workhorse' DES
- Procedural Results:
- Feasible
- Excellent Safety Profile
- Six Month Results
- Low Target Lesion revascularization rates (3\%)

- Low Late Loss at 6 months

	mm
Main Vessel (Proximal)	0.25 ± 0.43
Main Vessel (Distal)	0.00 ± 0.31
Side-Branch:	0.17 ± 0.35

Tryton US-IDE Study Design

Baseline Angiography - Eligible for Randomization

Tryton side branch + DES (main vessel)

$$
N=704
$$

DES (main vessel) + Provisional side branch

Conclusion TRYTON trial

- The Tryton two-stent strategy in true bifurcations (88\%) compared with the provisional strategy (8.0% side branch stents) did not meet the non-inferiority clinical endpoint (TVF), due to a relatively higher frequency of small periprocedural CK-MB elevations.
- However, both strategies were safe (rare clinically significant MIs and stent thrombosis) and both had low 9month clinically-driven TVR (P:3.6\%,T:4.7\%).
- Tryton improved side branch \% diameter stenosis at FU (secondary endpoint; $\mathrm{P}=0.002$)

Side Branch Bail Out Stenting
Nearly Eliminated in Tryton Group
Side Branch $\geq 2.25 \mathrm{~mm}$
Provisional ($n=143$)

Tryton ($n=146$)

SHORT

Product Details

NEW SHORT Length (15mm)

New Design Features

- Stent Design: 3 mm shorter main vessel zone
- Markers Position Optimized for Large Vessels
- Improved delivery system

SHORT

Product Details

NEW SHORT Length (15 mm)

New Design Features

- Stent Design: 3 mm shorter main vessel zone
- Markers Position Optimized for Large Vessels
- Improved delivery system

Left Main Treated with SHORT

Prof. Mohan Suvinathan

Spire Leeds Hospital

Growing Clinical Evidence in LM

- Retrospective Registry
- RJ Van Geuns and PW Serruys
- Investigator-Sponsors
- n ~50 patient

Periprocedural adverse events	
Procedure-related MI	$6 \%(3 / 50)$
Target vessel revascularisation	$0(0 / 50)$
ARC definite stent thrombosis	$0(0 / 50)$
Cardiac death	$0(0 / 50)$
MACE (hierarchical)	$6 \%(3 / 50)$
$30-d a y ~ a d v e r s e ~ e v e n t s ~$	$6 \%(3 / 50)$
Myocardial infarction	$0 \%(0 / 50)$
Target vessel revascularisation	$0 \%(0 / 50)$
ARC definite stent thrombosis	$4 \%(2 / 50)$
All-cause death	$0 \%(0 / 50)$
Cardiac death	$6 \%(3 / 50)$
MACE (hierarchical)	$10 \%(5 / 50)$
6-month adverse events	$12 \%(6 / 50)$
Myocardial infarction	$12 \%(6 / 50)$
Target vessel revascularisation	$2 \%\{1 / 50)$
Main vessel	$0 \%(0 / 50)$
Side branch	$6 \%(3 / 50)$
ARC definite stent thrombosis	$2 \%\{1 / 50)$
All-cause death	$22 \%(11 / 50)$
Cardiac death	
MACE (hierarchical)	

Conclusions: The use of the Tryton stent for treatment of LM bifurcation disease in combination with a conventional drug-eluting stent is feasible and achieves an optimal angiographic result. Safety of the procedure and six-month outcome are acceptable in this high-risk lesion PCI Further safery and efficacy studies with long-term outcome assessment of this strategy are warranted.

Acute procedural and six-month clinical outcome in patients treated with a dedicated bifurcation stent for left main stem disease: the TRYTON LM multicentre registry

Tryton Medical Receives CE-mark for the Left Main Indication Tryton Medical first \& only coronary bifurcation stent indicated for Left Main

Durham, N.C. - February 13, 2014 - Tryton Medical, Inc., the leading developer of stents designed to treat bifurcation lesions, announced that it has received CE Mark for the treatment of Left Main Coronary artery disease. With this approval, Tryton Medical becomes the first company to earn a CE Mark for this indication.

AXXESS System

Flared Distal-End Stent Design
Self Expanding Nitinol Material
$6,8,10$, or 12 mm flare diameter

Biolimus A9
antiproliferative
strut coating

Complete Ostial Coverage

Stent flares to cover ostia of Both branching vessels

Carina area is covered By stent struts

Goal: Span Both Vessels

- Cover the proximal lesion segment
- Cover the ostium of the side branch and distal parent vessel without compromising access to the side branch
- This is accomplished if 2 markers are in 1 branch and 1 is in the other
- Provide a convenient placement marker for additional distal stents

Axxess ${ }^{\text {TM }}$ Clinical Program

More than 500 patients, up to 5-year follow-up

AXXESS
 $N=43$

```
- France and Germany
- Pilot study using bare metal stent Axxess Platform
- In-segment restenosis at 6 months
- 6 month follow-up completed, study completed
```


AXXESS PLUS $N=139$

- Europe, Brazil and New Zealand
- FIM Safety and performance evaluation of Axxess DES
- Parent vessel and side branch in-stent late loss at 6 months measured by QCA
- 5 year follow-up completed, study completed

- Europe, Australia and New Zealand
- Evaluated best practices from AXXESS PLUS
- MACE ${ }^{1}$ at 9 months
- 5 year follow-up available, study completed

AXXENT
 $N=33$

```
o Europe
o Pilot study for Axxess LMI DES2
o MACE3 at }6\mathrm{ months
12 month follow-up available, study completed
```


COBRA
 $N=40$

[^0]
Primary Endpoint

In-Stent Late Lumen Loss @ 6 Months

	Axxess BA9 Stent	Axxess Bare Metal Stent	p

9 Month Restenosis DIVERGE Trial

Any In-segment bifurcation restenosis: 6.4\% (9/140 at 9 months) ${ }^{1,2}$

Location Analysis:

Proximal edge:

5-year Clinical Outcomes Cumulative Rates

Conclusions 1

Stenting coronary bifurcations requires more than deciding to implant 1 or 2 stents

The most important decisions should be taken by examining:
-the clinical setting (age of the patient, general conditions, extent of ischemia),

- the extent of the disease of both branches,
- their size,
- the territory of distribution and
- how confident is the operator with a specific approach

Conclusions 2

- Dedicated bifurcation stents address ideally the specific needs of bifurcation lesions
- Due to the variable anatomy of bifurcation lesions, variable stent designs or deployment techniques are most likely needed
- Dedicated bifurcation DES are needed to combine the benefits of both technologies

[^0]: - Europe

 Randomized multicenter trial to compare Axxess DES along with BioMatrix ${ }^{\text {™ }}$
 with Cullotte technique using Xience V®

 - Stent strut coverage assessed by OCT at 9 months

 PE bein analyzed - accepted for LBT at EuroPCR 2014

